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ABSTRACT

Our daily endeavors occur in a complex visual environment, whose intrinsic variability challenges the way we integrate
information to make decisions. By processing myriads of parallel sensory inputs, our brain is theoretically able to compute
the variance of its environment, a cue known to guide our behavior. Yet, the neurobiological and computational basis of such
variance computations are still poorly understood. Here, we quantify the dynamics of sensory variance modulations of cat
primary visual cortex neurons. We report two archetypal neuronal responses, one of which is resilient to changes in variance
and co-encodes the sensory feature and its variance, improving the population encoding of orientation. The existence of these
variance-specific responses can be accounted for by a model of intracortical recurrent connectivity. We thus propose that
local recurrent circuits process uncertainty as a generic computation, advancing our understanding of how the brain handles
naturalistic inputs.

Introduction
Selectivity to the orientation of visual stimuli is an archetypal feature of the neurons in the mammalian primary visual
cortex (V1)1, which has been historically studied using low-complexity stimuli such as oriented gratings2. While this approach
offers a clear hypothesis as to what neurons are responding to, it only probes for neural selectivity to individual input parameters,
such as orientation or spatial frequency. Natural vision, however, involves rich cortical dynamics3 integrating a mixture of
multiple local parameters and global contextual information4. Hence, a majority of our understanding of V1 relies on neural
responses to single inputs in orientation space, rather than naturalistic responses to multiple orientations.

This knowledge gap is not trivial, as the variance of distributions of sensory inputs is a fundamental cue on which our
brain relies to produce coherent integration of sensory inputs and prior knowledge of the world5, 6 in order to drive behavior7.
According to Bayesian inference rules, low-variance inputs are processed through fast feedforward pathways, whereas higher
sensory variance elicits a slower, recurrent integration8. How the brain performs computations on variance is not yet fully
understood. In V1, it has been shown that single neurons undergo nonlinear tuning modulations as a function of their input’s
variance9 which can serve as a functional encoding scheme10, 11. These recent results align with earlier models of recurrent
cortical activity of V112, 13 and also match psychophysical measurements in humans14–16. While it seems that local interactions
within V1 are sufficient to encode orientation variance17, the quantification of single neuron responses, their dynamics and their
link to a functional population encoding of variance remains to be established.

Here, we investigate the neural basis of variance processes in V1 using stimuli matching the orientation content of natural
images18. We present a quantitative analysis of single neurons’ variance-tuning functions, as well as their dynamics, reporting
heterogeneous modulations. Two archetypal response type emerge in V1, one of which relies on predominantly supragranular
neurons that maintain robust orientation tuning despite high sensory variance, allowing them to co-encode orientation and
variance, and enhancing V1’s orientation distribution encoding. A well-established V1 intracortical recurrence model accounts
for these resilient neurons, aligning with canonical Bayesian frameworks6 and suggesting uncertainty computations as a new
generic function for local recurrent cortical connectivity.

Results
Single neuron response in V1 depends on input variance
We recorded neural activity from 249 anesthetized cat V1 neurons, and measured orientation-selective responses to naturalistic
images called Motion Clouds18. These stimuli are band-pass filtered white noise textures and offer three advantages over both
simple grating-like stimuli and complex natural images. First, they enable fine control of mean θ and variance, controlled by
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Figure 1. Variance of orientation distributions characterizes local regions of natural images. (a) Distributions of orientation
from four 200x200 px regions of a natural image (picture taken by H.J.L.) obtained by an histogram of oriented gradients
(32x32 px/cell), centered around the most frequent orientation. (b) Motion Clouds, naturalistic stimuli (bottom row) with mean
orientation θ = 45° and increasing variance (Bθ ) from left to right. Distributions of orientation of the stimuli are shown on the
upper row. Circular Variance (CV) of the distribution is shown for comparison.

Bθ , of orientation distributions through a generative model, thereby reproducing natural images’ oriented content (Figure 1).
Second, as they are stationary in the spatial domain, they only probe orientation space, excluding any second-order information
exploitable by the visual cortex19. Third, by conforming to natural images’ 1/ f 2 power spectrum distribution20, they attain a
desirable balance between controllability and naturalness21. We generated 96 Motion Clouds by varying mean orientation θ

between 0° and 180° in 12 even steps and variance Bθ between ≈ 0° and 35° in 8 evenly spaced steps.
All recorded neurons displayed orientation selectivity to Motion Clouds. Nearly all (98.8%, p < 0.05, Wilcoxon signed-rank

test) units maintained their preferred orientation when variance Bθ increased, while peak amplitude of tuning curve diminished
significantly (95.1% units, p < 0.05, Wilcoxon signed-rank test, 73.1% mean amplitude decrease for Bθ = 35°). Only 28.5%
of the recorded units were still tuned for Bθ = 35.0° stimuli (p < 0.05, Wilcoxon signed-rank test). Thus, increasing input
variance reduces single neuron tuning, which manifests heterogeneously across neurons, as evidenced by two representative
single units shown in Figure 2a. Neuron A illustrates single units which are no longer orientation-tuned when variance Bθ

reaches 35° (W = 171.0, p = 0.24, Wilcoxon signed-rank test), unlike neuron B (W = 22.5, p = 10−6) which exemplifies the
aforementioned 28.5% variance-resilient units. These response types are characterized by functions relating Bθ to goodness of
tuning (circular variance, CV), named here variance-tuning functions (VTF, Figure 2b). Such VTFs represent the input/output
transformation in variance space, and are well-fitted with Naka-Rushton functions22 (Supplementary Figure 2a). This allows
to summarize variance modulations using only three parameters: n, the VTF non-linearity; Bθ50, the input variance level
for the tuned-untuned state transition; and f0, the orientation tuning goodness for lowest-variance inputs. Overall, VTFs
exposed diverse responses to variance among V1 neurons, with median values outlining a characteristic VTF that is slightly
non-linear, with a changepoint at Bθ = 19.2° (Figure 2c). In other words, most neurons tend to change abruptly in tuning
when input variance reaches 19.2°, after which the response become less sensitive to orientation. Alternative metrics were also
calculated, including variance-half width at half height (HWHH) and variance-maximum response functions (Supplementary
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Figure 2. Single neuron tuning correlates with input variance. Additional examples are shown in Supplementary Figure 1.
(a) Tuning curves of two neurons responding to Motion Clouds of increasing variance Bθ . Dots indicate the mean firing rate
across trials (baseline subtracted, 300 ms average), error bars the standard error and lines represent a fitted von Mises function.
(b) Variance-tuning functions (VTF), relating the change of orientation tuning measured by the circular variance (CV, dots) as a
function of input variance Bθ , fitted with a Naka-Rushton (NKR) function (dashed curves, parameters shown in light gray).
Parameters of the VTF are log(n) = 8.4, Bθ50 = 14.7°, f0 = 0.4 for neuron A and log(n) = 2.4, Bθ50 = 35.0°, f0 = 0.3 for
neuron B. The CV identity curve is shown in solid gray. (c) Histograms of the NKR parameters (in the [5%;95%] range of
possible NKR fitting values) for the 249 recorded units. Median values are indicated by a black arrow (log(n) = 3.6,
Bθ50 = 19.2°, f0 = 0.75).

Figure 2b-e). Although HWHH displayed patterns resembling VTFs, we elected to not use it, as its reliance on fits, its
consequent susceptibility to fitting artifact, and its similarity with CV are not desirable properties. Since CV also inherently
accounts for the firing rate at the preferred orientation (see Methods), we relied on this metric to describe both maximum
amplitude and goodness of tuning in a single metric.

Orientation variance impacts not only orientation tuning, but also the dynamics of the response of V1 neurons (Figure 3).
Interestingly, both effects are linked, as demonstrated by the two example VTFs: neuron B, which exhibited orientation-tuned
responses for Bθ = 35° inputs (Figure 2a), also had slower time-dependent change of goodness of tuning (relative min. of
reduction of 42% of max. CV at 200 ms post-stimulation onset, Bθ = 0°) compared to neuron A (relative min. of 26% of
max. CV at 90 ms post-stimulation onset, Figure 3b). These dynamical modulations were also heterogeneously distributed
amongst the population, significantly more spikes emitted 200 ms after stimulation onset for Bθ = 35° (Figure 3d, U = 14936.0,
p < 0.001, Mann-Whitney U-test). In summary, orientation variance induces changes in both tuning and dynamics of V1
neurons, revealing two archetypal types of response: either fast in time and non-linear with respect to variance (neuron A) or
slow in time and linear with respect to variance (neuron B).

Multiple types of variance responses are found in V1
To properly characterize the two aforementioned types of responses to variance, we separated the recorded neurons in two groups
using K-means clustering the Principal Components (PC, Figure 4) of the neuronal responses. Clustering was performed on the
VTFs (Figure 4b), tuning statistical measurements (Figure 4c,d) and response dynamics (Figure 4e,f). We used the first 2 PC for
clustering the data, which accounted for 39.1% of cumulative variance (Supplementary Figure 4a), and chose two clusters based
on the number of example responses and the empirical absence of an elbow23 in the Within-Clusters-Sum-of-Squares (WCSS)
curve (Supplementary Figure 4b). This splits the data into a cluster of 164 neurons, including neuron A, and another cluster of
85 neurons associated with neuron B’s response type. As neuron B displayed resilience to increased input variance (Figure 2a),
its cluster was labeled resilient neurons. Conversely, neurons clustered with neuron A were labeled vulnerable neurons (blue and
red colors, respectively, Figure 4a). Opting to categorize the data into two distinct response types facilitates a comprehensive
understanding of the underlying continuum of behaviors. This approach has proven successful in the characterization of novel
visual responses, such as V1 simple/complex cells24 and MT pattern/component cells25. To further enhance the analysis, a
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Figure 3. Neural dynamics depend on input variance. Additional examples are shown in Supplementary Figure 3.
(a) Peristimulus time (PST) histogram and rasterplot for the two previous example neurons, at variance Bθ = 0° (purple) and
Bθ = 35° (yellow). (b) Tuning curve dynamics in 100ms windows, starting at labeled times. (c) Delay to peak amplitude of
tuning curves for Bθ = 0° (purple, median = 210 ms) and Bθ = 35° (yellow, median = 233 ms) for the population. Median
values are indicated by a black arrow. (d) Log ratio of early (< 100 ms post-stimulation) and late (> 200 ms) spike counts for
Bθ = 0° (median = −0.54) and Bθ = 35° (median = 0.27) for the population.

continuum-based analysis is provided in Figure 6f.

The K-means clustering resulted in significant difference between the two groups’ VTF parameters (Figure 4b): re-
silient neurons had significantly more linear modulations (log(n), U = 4029.0.0, p < 0.001, Mann-Whitney U-test), higher
changepoints (Bθ50, U = 7854.0, p = 0.028) and better tuning to low-variance inputs ( f0, U = 4992.0, p < 0.001), which
endows them with the ability to respond to orientation on a broader range of input variances26, 27. No significant differences
in the variance-HWHH and variance-firing rate functions were observed, except for the non-linearity of the latter metric
(Supplementary Figure 5). This is coherent with the clustering on the statistical measurement of orientation tuning, which
showed that resilient neurons remained significantly tuned to higher values of Bθ (Bθmax, Figure 4c, U = 9155.0, p < 0.001).
However, both groups of neurons had similar circular variance for Bθ = 35° (Figure 4d). This suggests that both types of
neurons were similarly poorly tuned for inputs of highest variance, but underwent different tuning changes between Bθ = 0° and
Bθ = 35°. In terms of dynamics, the two groups exhibited the same differences that characterized neurons A and B. Resilient
neurons discharged significantly later than vulnerable neurons for Bθ = 0° (Figure 4e, U = 8455.5, p = 0.002), but both groups
were on par for inputs of Bθ = 35° (U = 7794.5, p = 0.063). Interestingly, resilient neurons had significantly lower time to
maximum amplitude of the tuning curve for Bθ = 0° (Figure 4f, U = 5542.5, p = 0.014), which opposes the early/late ratio of
spikes. Neither group showed variance-dependent modulation of the delay to maximum spike count (U = 3058.0, p = 0.084
and U = 11545.5, p = 0.090 for resilient and vulnerable, respectively), and both groups showed similar delay for Bθ = 35°
(U = 6094.5, p = 0.158).

The existence of these two groups of neurons could not be attributed to the integration of the drifting motion of the stimuli
(direction selectivity index, unused in the clustering process, Figure 4g, U = 7031.5, p = 0.910). Instead, the location of
the recorded units (unused in the clustering process) predominantly positioned the resilient neurons in supragranular layers,
offering a mechanistic basis for their existence (Figure 4h). Moreover, resilient neurons have sharper orientation tuning and
slower dynamics, which are distinctive features of supragranular neurons28, 29. This, however, does not establish a functional
role for these two types of responses in V1.
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Figure 4. Responses to changes in variance fall into two categories. (a) Principal Components (PC) analysis of the data,
K-Means clustered (2 clusters, centroids shown as black crosses and separatrix as dashed line). 9 resilient neurons with
PC1 > 3 are plotted at PC1 = 3. Neuron A and B are shown as dashed circles. (b) Boxplot of the VTF parameters log(n), Bθ50,
f0 (ns, not significant; *, p < 0.05; **, p < 0.01, ***, p < 0.001 Mann-Whitney U-test). Boxes cover quartile values with a
median white line. Whiskers extend to Q1−1.5∗ IQR and Q3+1.5∗ IQR, where Q1;Q3 are lower;upper quartiles and IQR is
the interquartile range. (c) Maximum Bθ for significant orientation tuning curve. (d) Circular variance at Bθ = 0° and
Bθ = 35°. (e) Log ratio of the early (< 100 ms) and late (> 200 ms) spike counts at Bθ = 0° and Bθ = 35°. (f) Delay to
maximum peak amplitude of tuning curves at Bθ = 0° and Bθ = 35°. (g) Direction selectivity index (unused in the clustering).
(h) Laminar position (unused in the clustering).

Population level modulations of the orientation code
As the neuronal population has been separated in well-characterized groups, we wish to understand the functional role played by
resilient and vulnerable neurons. To that end, we used a neuronal decoder that probes for population codes in V1, enabling us to
seek what parameters of the stimuli each neuron group was encoding. We trained a multinomial logistic regression classifier30,
a probabilistic model that classifies data belonging to multiple classes (see Methods). This classifier received the firing rate
of neurons in a sliding time window (100 ms) and learned, for each neuron, a coefficient that best predicts the class (i.e. the
generative parameter θ ,Bθ or θ ×Bθ ) of the stimulus.

This decoder was first used to probe for representation of the stimuli’s orientations θ in the population activity. For this
purpose, the dataset of trials was separated for each variance, such that 8 independent, Bθ -specific, orientation decoders were
learned, with optimal parametrization (Supplementary Figure 6). These orientation decoders were able to retrieve the correct
stimulus’ θ well above the chance level (1 out of 12 orientations, max. accuracy = 10.56 and 4.68 times chance level for
Bθ = 0° and Bθ = 35°, respectively) from the entire population recordings. The temporal evolution of these decoders’ accuracy
(Figure 5a) showed that maximally accurate orientation encoding correlates almost linearly with the stimuli’s variance, as does
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Figure 5. Input variance modulates orientation decoding in V1. (a) Time course of orientation θ decoding accuracy at two
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decoding from resilient neurons at Bθ = 35 is shown as a gray overlay (Wilcoxon signed-rank test, threshold p < 0.01).
Decoding at chance level is represented by a gray dashed line and stimulation time by a black line. (b) Population tuning curves
with a von Mises fit, showing the likelihood of decoding each θ in four time windows. (c) Same as (a) for the two groups of
neurons. (d) Same as (b) for the two groups of neurons, with Bθ = 0° (upper row) and Bθ = 35° (lower row). (e) Time course
parameters for three decoders at all Bθ , estimated by fitting a sigmoid up to PST = 300 ms. τ is the time constant.
(f) Correlation between classification accuracy and population circular variance for the whole population (left), for both groups
with Bθ = 0° (middle) and Bθ = 35° (right). Linear regression are shown as solid lines with slope m indicated (all significant,
p < 0.001, Wald Test with t-distribution).

the time to reach this accuracy (Figure 5e, black). These dynamics depend on the input’s variance, exhibiting a rapid initial rise
followed by a plateau for low-variance inputs, while steadily increasing linearly over time for high-variance inputs. Interestingly,
the decoding accuracy remained stable for approximately 100 ms even after a stimulus was no longer displayed. Since the
decoders are trained independently in each time window, this accumulative process occurs in the recordings themselves, and
not in the decoder.

The full output of these decoders (see Methods) is a population tuning curve, which displays the likelihood of decoding all
possible input classes (here, all θ , Figure 5b), rather than the proportion of correct decoding reported by the accuracy metric.
The clear correlation between the sharpness of these population tuning curves (Figure 5f left) and the accuracy of the decoder
shows that improvements of decoding accuracy rely directly on a population-level separation of features within orientation
space30, particularly at higher Bθ (Figure 5b, third panel). Overall, Bθ influences the temporality of the orientation code in
V1, which echoes its influence on single-neuron dynamics (Figure 3). The short delay required to process precise inputs is
congruent with the feedforward processing latency of V131, while the increased time required to reach maximum accuracy for



low precision oriented inputs suggests the involvement of a slower, recurrent mechanism.
We then sought to assert the role of the vulnerable and the resilient neural populations by decoding θ from either group.

The number of neurons in each group was imbalanced (79 more vulnerable neurons), which influences the accuracy of the
decoder (Supplementary Figure 6). Consequently, we randomly selected (with replacement) groups of 100 neurons from either
population, repeating the selection 5 times. Using the same approach as with the global population decoding, we then trained
Bθ -specific orientation decoders on the activity of either group of neurons. Resilient neurons outperformed vulnerable ones in
decoding accuracy for 56% of the timesteps, mainly in the 160−330 ms period (Figure 5c). However, both groups exhibited
similar population tuning curves (Figure 5d) and time courses (Figure 5e). Despite the better tuning of resilient neurons to
inputs with higher variance (Figure 4), both groups have overall similar orientation encoding performances for Bθ = 35°.
Therefore, orientation can be decoded somewhat more effectively from the resilient neurons at the population level, but neither
group appears to have a clear or stable advantage over the other in this regard, especially at higher Bθ .

A subset of V1 neurons co-encode orientation and its variance
Given that orientation encoding did not reveal a fundamental difference in the respective contributions of resilient and vulnerable
neurons, we then investigated the encoding of the stimulus’ variance Bθ . The same type of decoder previously used failed to infer
the variance Bθ (chance level = 1 out of 8 values of Bθ , max. accuracy = 1.91 times chance level) from the population activity
(Supplementary Figure 8a,b). This variance decoding also failed to reach more than twice the chance level (max. accuracy =
1.72 and 1.71 times chance level for resilient and vulnerable neurons, respectively) in both resilient and vulnerable neurons
(Supplementary Figure 8c,d). At the single neuron level, tuning curves flatten with increments of variance (Supplementary
Figure 2a), which makes it difficult to distinguish activity generated by stimuli with Bθ = 0.0° and orthogonal orientation from
the activity generated by stimuli with Bθ = 35.0° and preferred orientation. This limitation could potentially stem from the
recording scale (249 neurons), which is more than an order of magnitude smaller than the quantity of neurons a single V1
biological decoder can access32. Thus, neither the decoding of variance Bθ nor the decoding of orientation θ accounts for a
different role between resilient and vulnerable neurons.

The decoding methods used so far have assumed that V1 encodes independently single input parameters. However, a more
realistic assumption is to consider the visual system’s natural inputs as distributions of information (Figure 1) that cortical
neurons must process from thalamic inputs33 based on a probabilistic computational principle34. Here, this implies that the
naturalistic form of processing for a V1 neuron would be co-encoding both the mean feature (θ ) and its associated variance
(Bθ ) to access the entire probability distribution.

We thus proceeded to train a decoder that retrieves both orientation and variance of the stimulus’ simultaneously, referred
to as a θ ×Bθ decoder. This decoder correctly predicted orientation and variance with a maximum accuracy reaching 16.36
times the chance level (1/96, Figure 6a, gray). The likelihood structure (Figure 6b, upper row) showed that the correct θ

was decoded with alongside multiple concurrent hypothesis over Bθ . The progressive increase of accuracy stems from the
emergence of a dominant encoding of θ at the correct Bθ , consequently diminishing the relative magnitude of representations
over other Bθ values over time. Interestingly, resilient neurons showed here a different functional role from vulnerable neurons,
with markedly better co-encoding of Bθ and θ (max. accuracy = 11.0 and 9.0 times chance level for resilient and vulnerable
neurons, respectively, Figure 6a, blue, red). Both groups displayed ambiguity regarding Bθ (Figure 6b, lower row), and
correlated sharpening/accuracy ratios on the correct Bθ population curve (Figure 6c, left) or on the off-median population
curves (Figure 6c, right).

To understand the utility of this co-encoding, we marginalized the decoder over Bθ , creating an orientation-only encoder
that simultaneously learned both orientation and variance. Data from resilient neurons then provided significantly better
encoding of orientation than vulnerable neurons (max. accuracy = 6.0 and 5.4 times the 1/12 chance level for resilient and
vulnerable neurons respectively, Figure 6d, gray regions), demonstrating that the overall V1 orientation code improves with a
co-decoding of its variance. The distinction between resilient and vulnerable neurons is further emphasized by the decoder
coefficients, which represent the contributions of each type of neurons towards the overall θ ×Bθ code (Figure 6e, for single
neuron examples see Supplementary Figure 9). Here, these coefficients are depicted as a polar plot, where the orientation
θ (centered around preferred orientation) is shown as the angle of each bin from the upper vertical and the variance Bθ is
represented as the eccentricity of each bin from the center. Visualizing the coefficients of the whole population decoder (i.e.,
trained on the 249 neurons, Figure 6a, gray) shows that the output learned from resilient neurons concurrently informs about
both a wide range of orientations and variances, as observed by the extent of the bins in the eccentricity (Bθ ) axis (Figure 6e,
bottom row). On the other hand, the decoding process extracted orientation information on a very small range of Bθ from the
activity of vulnerable neurons (Figure 6e, top row). Even though the coefficients are learned independently at each time steps,
the difference of information between the two groups of neurons remains extremely stable through time.

Overall, orientation and its variance can be co-decoded simultaneously from resilient neurons, while only orientation can
be decoded from vulnerable neurons. This is confirmed by a continuous score-based decoding metric based on the K-means
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Figure 6. Orientation and its variance can be decoded from resilient neurons. (a) Time course of the accuracy for decoding
θ ×Bθ of Motion Clouds. Lines are the mean accuracy and contour the SD. Significantly better decoding from resilient
neurons is shown as a gray overlay (Wilcoxon signed-rank test, threshold p < 0.01). Decoding at chance level (1/96) is
represented by the gray dashed line. (b) Population tuning curves for the likelihood of decoding each θ ×Bθ in four time
windows, centered around the correct θ ×Bθ . (c) Correlation between classification accuracy and population circular variance
for correct Bθ population tuning curves (left) and averaged across other Bθ tuning curves (right). Linear regression are shown
as solid lines with slope m indicated (all significant p < 0.001, Wald Test with t-distribution). (d) Time course of the θ ×Bθ

decoder, marginalized over Bθ to produce θ -only outputs. (e) Mean decoding coefficients of the two groups yielded from the
whole population θ ×Bθ decoder. (f) Score-based decoding for θ (first and second columns), Bθ (third) and θ ×Bθ (fourth).
Raw scores (points) are fitted with a linear regression (dashed curve), with Spearman R shown in case of a significant
correlation (p < 0.05).

parameters (Figure 6f) that correlates, for the entire population (i.e., without splitting in two groups), their maximum decoding
accuracy to a degree of vulnerability/resilience. After providing this functional rationale for resilient and vulnerable neurons,
we finally address the question of how both types of neurons can exist in V1.
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Figure 7. Recurrent interaction modeling can explain the existence of resilient and vulnerable neurons. (a) Ring topology of
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(c) VTF with recurrent connectivity, under two configurations retrieved by searching for VTF parameters close to those of
neuron A, B (Figure 2b) and C (Supplementary Figure 1). (d) Delay to half maximum firing rate of the model (τ) for each
connectivity profile, shown as a contour plot of κexc and κinh. [5%;95%] range of the parameters corresponding to the VTFs in
(c) are displayed below the scale bars. (e) VTF parameters obtained from the model for each connectivity profile, shown as a
contour plot of κexc and κinh. [5%;95%] range of the parameters of the VTFs shown in (c) are displayed below the scale bars.

Recurrent activity can explain the existence of neurons co-encoding orientation and variance
A notable difference between vulnerable and resilient neurons is their different location within the cortical layers (Figure 4h).
This typically implies differences in local circuitry, particularly in the intra-V1 recurrent interactions between cortical columns,
which are mostly confined to supragranular layers35. Given that resilient neurons are predominantly found in these supragranular
layers, we aimed to find a mechanistic rationale for the existence of the two groups of neurons based on local interactions in V1.
We developed a neural network from a well-established computational model of recurrent connectivity in V1, originally used
to account for the intracortical activity in cat V136 and later simplified as a center-surround filter in the orientation domain29.
This model has already accounted for an extensive range of emerging properties in cortical circuits37, 38. Briefly, it is built
of orientation selective neurons tiling the orientation space and connected amongst themselves via recurrent synapses which
follow an excitatory/inhibitory difference of von Mises distributions (Figure 7a). Here, we model inputs with higher variance as
more spread in orientation space (Figure 1) and thus in model space, which hence drives the recurrent dynamics of the model
based on Bθ (for a full description, see Methods).

Considering that feedforward connectivity with heterogeneous tuning can encode mixtures of orientations and natural
images9, we first ran our model without recurrent synapses. We reproduced the heterogeneous selectivity by convolving the
input with tuning curves of varying bandwidths (Figure 7b, inset). This feedforward mode of the network was only able to
produce a limited number of responses (Figure 7b), in which increasing the bandwidth of the tuning curves increased the
parameter f0 of the VTF, but kept n and Bθ50 constant.

Barring that explanation, we focused on the role of recurrent synapses and disabled the convolution of inputs. We varied
the concentration parameters of the synaptic distributions κinh and κexc (Figure 7c,e) in 200 even steps ranging from 0.35 to 7,
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encoding progressively increases through time, as recurrent interactions perform computations to represent the most salient
oriented feature in the input.

yielding 40,000 possible configurations of the model. This allowed to manipulate the VTF and to accurately reproduce those of
single neurons recorded in V1 (neuron A, B in Figure 2b and C in Supplementary Figure 1, modeled in Figure 7c). Altering
the type of recurrence between neurons with different orientation preference allowed to reproduce all VTF found in V1. The
parameter spaces (Figure 7e) showed a trend for resilient VTFs (low n, high Bθ50, low f0) to be found mostly around the Kexc ;
Kinh identity line, thus produced by a balanced recurrent connectivity. Vulnerable VTFs (high n, low Bθ50, high f0) were, on the
contrary, mostly found above the identity line, where the configuration of the network is dominated by excitation over inhibition.
This is consistent with the range of parameters that yielded higher response latency (Figure 7d), which also occupied more
parameter space when input variance increased. In summary, recurrence between V1 neurons seems to be sufficient to explain
the existence of vulnerable and resilient neurons and, consequently, to account for the co-encoding of orientation and variance.

Discussion

The variance of oriented inputs to V1 impacts orientation selectivity9 and we have sought to understand how V1 could process
this input parameter. We found that variance causes modulations in tuning (Figure 2) and dynamics (Figure 3) of single V1
neurons, which we have classified as either vulnerable or resilient (Figure 4). Decoding analysis revealed variance-dependent
accumulative dynamics in the two groups of neurons (Figure 5) that are directly tied to a population-level separation of features
within orientation space30. Both groups can encode orientation but not variance (Supplementary Figure 8), and only resilient
neurons are able to accurately co-encode orientation and variance of the input to V1 (Figure 6). Based on cortical layer position



(Figure 4h) and on a computational approach (Figure 7), we propose that the processing input variance in V1 is supported by
recurrent connectivity between local cortical populations (Figure 8). This not only improves the encoding of orientation in V1,
but also links directly to canonical Bayesian frameworks, suggesting uncertainty computation as a new mechanism supported
by local recurrent cortical connectivity.

Here, we restricted our approach to orientation space, rather than investigating the full extent of spatial relationships
which are present in natural images. Thus, full-field stimuli without second-order correlation were used, which compared to a
purely ecological environment, have likely excluded end-stopped cells39. Whilst this approach limited the responses to V1 and
excluded higher-order cortical areas, there exists both neurobiological and computational evidences that V1 does not need to
recruit other cortical areas to process orientation variance. For instance, the heterogeneous recurrent excitatory and inhibitory
synaptic connectivity in V140–43 sustains resilient orientation tuning44 that can account for the diversity of single neurons’
resilience under different connectivity profiles, as explored in our computational model (Figure 7). This is supported by the
temporal scale of local recurrent connectivity, namely the slowly-conducted horizontal waves in an orientation map45, which
fit the view of variance processing as an iterative and accumulative computation implemented by local recurrent interactions
between supragranular resilient neurons that are heavily connected through recurrent interactions with neighboring cortical
columns28, 29, 35, 45. In this regard, our reported time scales may have been slightly affected by the use of anesthesia (halothane),
which has a limited visible effect on V146, 47 and is less likely to cause modulations in this area compared to higher-order
areas48–51.

Computationally, most existing models support the idea that processing orientation variance can be achieved solely with
local V1 computations10. For instance, Goris et al.9, reported that heterogeneously tuned V1 populations help encode the
orientation distributions found in natural images, and that this functional diversity could be accounted for by a linear-nonlinear
(L-NL) model. While this could explain the diversity of tuning in our data (Figure 2), we found that such a model failed
to account for some types of modulations of the VTFs (Figure 7b). Therefore, we employed a model designed to replicate
intracortical cat V1 data38 and demonstrated that it reproduces various VTFs and dynamics observed in our recordings. The
model used here pools activity from multiple orientation-tuned units into a single neuron, which we interpreted as a local
recurrent model. While our results do not require contributions from extrastriate regions to explain the observed results, the
possibility of recurrence involving neurons outside V1 cannot be entirely ruled out at this time52.

Our study confirms the findings in the anesthetized macaque literature9 by identifying single-neuron variance modulations
that serve as the basis for decoding orientation variance at the population level in V1. This suggests that a common mechanism
may underlie this neural mechanism in both felines and primates, which is a fundamental computational requirement for proper
encoding of natural images in V153. Although gain/variance V1 functions have been previously reported17, we demonstrate a
similar input-output relationship in the form of VTFs, that have the added benefit of characterizing and extrapolating variance
modulations across the full dynamical range of V1 populations. Further, we finely analyzed the temporal component of the
response that is absent from the literature. We propose that all these response properties can be linked to cortical layers, binding
the idea that supragranular neurons with sharp tuning and slow dynamics28, 29 support the co-encoding orientation and its
variance.

This leads to an interesting tie to Bayesian inference, namely under the specific case of predictive coding34, that canonically
assigns (inverse) variance weighting of cortical activity to supragranular recurrent connectivity6, 8, without the need for
extrastriate computations. This is an interesting perspective which opens up a general interpretation of our results into the
broader context of processing variance/precision/uncertainty at different scales of investigations. Extending the present results
to other cortical areas or other sensory modalities would be a simple process, given the generative stimulus framework used
here18, which could yield pivotal new insights into our understanding of predictive processes in the brain.

Methods
Visual stimulation
Motion Clouds are generative model-based stimuli18 which allow for fine parameterized control over a naturalistic stimuli54,
which is a desirable trait when probing sensory systems under realistic conditions21. They are mathematically defined as
band-pass filtered white noise stimuli, whose filters in Fourier space are defined as a parameterized distribution in a given
perceptual axis (here, only orientation, but can be extended to speed55 and scale56). Thus, the Motion Clouds presently used are
fully characterized by their mean orientation and their orientation variance, such that a given stimulus S can be defined as:

S = F−1(O(θ ,Bθ )) (1)

where F is the Fourier transform and O the orientation envelope, characterized by its mean orientation θ and its orientation
bandwidth Bθ . For Bθ < 45.0°, Bθ = 1/

√
κ , where κ is the concentration parameter of a von Mises distribution, and hence

approximates the standard deviation57. It thus serves as a measure of the orientation variability in the pattern, and as such,



we used the term variance to describe it throughout the text. A total of 96 different stimuli were generated, with 12 mean
orientations θ ranging from 0 to π in even steps, and 8 orientation variance Bθ ranging from ≈ 0 to π/5 in even steps. The
orientation envelope is a von Mises distribution:

O(θ ,Bθ ) = exp
{

cos(2(θ f −θ))

4 ·B2
θ

}
(2)

where θ f is the angle of the frequency components of the envelope in the Fourier plane, which controls the spatial frequency
parameters of the stimuli, set here at 0.9 cycle per degree. The stimuli were drifting orthogonally in either direction with respect
to the mean orientation θ at a speed of 10°/s, which is optimal to drive V1 neurons58. For the range of values of Bθ considered
here, the orientation envelope approximates a Gaussian distribution and Bθ is thus a measure of the variance of the orientation
content of the stimuli.

All stimuli were generated using open-source Python code (see Additional information) and displayed using Psychopy59.
Monocular stimuli were projected with a ProPixx projector (VPixx Technologies Inc.) onto an isoluminant screen (Da-Lite©)
covering 104°×79° of visual angle. All stimuli were displayed for 300 ms, interleaved with a mean luminance screen (25
cd/m2) shown for 150 ms between each trial. Trials were fully randomized, and each stimulus (a unique combination of
θ ×Bθ × drift direction) was presented 15 times. Stimuli were shown at 100% contrast, meaning that as Bθ increased, the
amount of orientation energy at median orientation θ decreased, and conversely for off-median orientations (as illustrated in
Figure 1b). This differs from manipulating the contrast, which would reduce the orientation energy at all orientations.

Surgery
Experiments were conducted on 3 adult cats (3.6 - 6.0 kg, 2 males). All surgical and experimental procedures were carried
out in compliance with the guidelines of the Canadian Council on Animal care and were approved by the Ethics Committee
of the University of Montreal (CDEA #20-006). Animals were initially sedated using acepromazine (Atravet®, 1 mg/kg)
supplemented by atropine (0.1 mg/kg). Anesthesia was induced with 3.5% isoflurane in a 50:50 mixture of O2:N2O (v/v).
Following tracheotomy, animals underwent artificial ventilation as muscle relaxation was achieved and maintained with an
intravenous injection of 2% gallamine triethiodide (10 mg/kg/h) diluted in a 1:1 (v/v) solution of 5% dextrose lactated Ringer
solution. Through the experiment, the expired level of CO2 was maintained between 35 and 40 mmHg by adjusting the
tidal volume and respiratory rate. Heart rate was monitored and body temperature was maintained at 37°C by means of a
feedback-controlled heated blanket. Lidocaine hydrochlorine (2%) was applied locally at all incisions and pressure points
and a craniotomy was performed over area 17 (V1, Horsley-Clarke coordinates 4-8P; 0.5-2L). Dexamethasone (4 mg) was
administered intramuscularly every 12h to reduce cortical swelling. Eye lubricant was regularly applied to avoid corneal
dehydration.

Electrophysiological recordings
During each recording session, pupils were dilated using atropine (Mydriacyl) while nictitating membranes were retracted
using phenylephrine (Mydfrin). Rigid contact lenses of appropriate power were used to correct the eyes’ refraction. Anesthesia
was changed to 0.5-1% halothane to avoid anesthesia-induced modulation of visual responses47. Finally, small durectomies
were performed before each electrode insertion and a 2% agar solution in saline was applied over the exposed cortical
surface to stabilize recordings. Linear probes (≈ 1 MΩ, 1x32-6mm-100-177, Neuronexus) were lowered in the cortical tissue
perpendicularly to the pia and extracellular activity was acquired at 30KHz using an Open Ephys acquisition board60. Single
units were isolated using Kilosort 261 and manually curated using Phy62. Clusters with low amplitude templates or ill-defined
margin were excluded from further analysis. Additional exclusion was performed if a cluster’s was unstable (firing rate below
5 spikes.s−1 for more than 30 seconds), or if the neuron was not deemed sufficiently orientation selective (R2 < 0.75 when
fitted with a von Mises distribution). Passing that exclusion step, all remaining neurons responded to Motion Clouds. Laminar
positions were determined by the depth of the recording site with respect to the pia, which was then cross-validated by the
evoked Local Field Potential (LFP) using sink/source analysis63, 64.

Single neuron analysis
Orientation tuning curves were computed by selecting a 300 ms window maximizing spike-count variance65. The firing rate
was averaged across drift directions and a von Mises distribution57 was fitted to the data:

f (θk) = R0 +(Rmax −R0) · exp
{

κ · (cos(2(θk −θpref))−1)
}

(3)

where θk is the orientation of the stimuli, Rmax is the response (baseline subtracted) at the preferred orientation θpref, R0 the
response at the orientation orthogonal to θpref and κ a measure of concentration. To control for direction selectivity when



averaging tuning curves across drift direction, we computed a direction selectivity index:

Ds =
Rpref −Rnull

Rpref
(4)

where Rpre f is the firing rate at the preferred direction (baseline subtracted) and Rnull the firing rate at the preferred direction
plus π . The quality of each tuning curve was assessed by computing a global metric, the circular variance (CV) of the unfitted
data, which varies from 0 for perfectly orientation-selective neurons to 1 for orientation untuned neurons29. It is defined as:

CV = 1−
∣∣∣∣∑k R(θk) · exp{2iθk}

∑k R(θk)

∣∣∣∣ (5)

where R(θk) is the response of a neuron (baseline subtracted) to a stimulus of angle θk. The changes of CV as a function of Bθ

were fitted with a Naka-Rushton function22:

f (Bθ ) = f0 + fmax
Bn

θ

Bn
θ
+Bn

θ50
(6)

where f0 is the base value of the function, f0 + fmax its maximal value, Bθ50 the stimulus’ variance at half fmax and n a strictly
positive exponent of the function.

The significance of the tuning to orientation was measured by comparing the unfitted firing rate at the preferred and
orthogonal orientations across trials, using a Wilcoxon signed-rank test correct for continuity, and the maximum value of
Bθ which yielded a significant result was designed as Bθmax (i.e., the maximum variance at which a neuron is still tuned).
Shifts of the preferred orientation were evaluated as the difference of θpref between trials where Bθ = 0° and Bθ = Bθmax. The
significance of the variation of peak amplitude of the tuning curve was measured as by comparing the unfitted firing rate at the
preferred orientation between trials where Bθ = 0° and Bθ = Bθmax.

Population decoding
The parameters used to generate Motion Clouds were decoded from the neural recordings using a multinomial logistic regression
classifier30. For a given stimulus, the activity of all the recorded neurons was a vector X(t) =

[
X1(t) X2(t) · · · X249(t)

]
,

where Xi(t) is the spike count of neuron i in a time window [t; t +∆T ]. The onset of this window t was slid from -200 ms to 400
ms (relative to the stimulation time) in steps of 10 ms while ∆T was kept constant at 100 ms. It should be noted that merging
neural activity across electrodes or experiments is a common procedure66, 67, which we validated in our data by verifying that
the electrode or experiment which yielded the data could not be decoded from the neural activity (Supplementary Figure 7).
Mathematically, the multinomial logistic regression is an extension of the binary logistic regression30 trained here to classify
the spike vector X(t) between K classes. The probability of any such vector to belong to a given class is:

P(y = k|X(t)) =
exp{⟨βk,X(t)⟩}

∑
K
k′=1

exp
{
⟨βk′ ,X(t)⟩

} (7)

where ⟨·, ·⟩ is the scalar product over the different neurons, k = 1, . . . ,K is the class out of K possible values and βk are
the coefficients learned during the training procedure of the classifier. Several decoders were trained with classification
tasks: decoding orientation θ (K = 12, Figure 5), decoding orientation variance Bθ (K = 8, Supplementary Figure 8) or both
(K = 12× 8 = 96, Figure 6). All meta-parameters were controlled, showing that the decoding performances stem mainly
from experimental data rather than fine-tuning of the decoder parameterization (Supplementary Figure 6). For all decoding
experiments reported, we used integration window size ∆T = 100ms, penalty type = ℓ2, regularization strength C = 1. and
train/test split size = 0.15.

The performance of all decoders was reported as the average accuracy across all classes K, known as the balanced accuracy
score68. The accuracy for each specific class k can also be reported in the form of a population tuning curve, in which the
likelihood of decoding each possible class K is given by equation 7. The significance of differences between two neuron
groups was reported only when two consecutive timesteps, i.e., 20ms or more, exhibited significant differences. To estimate the
timecourse of the decoders, they were fitted in the [0;300] ms range with a sigmoid function:

σ = maxacc

(
1

1+ e−kτ

)
+minacc (8)

where maxacc and minacc are respectively the maximum and minimum accuracies of the decoder, k the steepness and τ the time
constant of the function. To perform decoding on the same number of vulnerable or resilient neurons, we randomly picked with
replacement groups of 100 neurons and bootstrapped this process 5 times.



As the neurons were clustered into two populations for comparison purposes (Figure 4), we also reported the decoding
accuracy based on a continuous vulnerability score (Figure 6f). This score was computed as a sum of neuronal responses
variables significantly different after the clustering, weighted by their mean Principal Component (PC-1 and PC-2) parameters:

score = 1−W1(Bθ50)+W2(1− log(n))+W3(1− f0)+W4(Bθmax)+W5(1−CV)+W6(early/late ratio)+W7(delay) (9)

where Wi is a parameter yielded by the Principal Component Analysis corresponding to its associated neuronal response
variable. Each variable is normalized, yielding a scalar score that varies between 0 (most resilient) to 1 (most vulnerable
neuron). This score-based decoding was performed on groups of 100 neurons sorted by descending score, and repeated a total
of 7 times on increasingly more vulnerable neurons (thus with an overlap of 20 neurons).

Computational model
We used a recurrent network of orientation-tuned neurons to model responses to increasing orientation variance Bθ . The model
presently used was first used to account for the intracortical activity in the cat primary visual cortex36, although it was presently
simplified as a center-surround filter in the orientation domain29. Notably, this network has been able to account for numerous
experimental findings, including learning and adaptation of cortical neurons37, 38, whose implementations are similar to ours.

The model consisted of N orientation-tuned neurons, evenly tiling the orientation space between −π and π . Each neuron is
modeled as a single passive unit whose membrane potential obeys the equation:

τδV/δT +V =Vff +Vexc −Vinh (10)

where τ is the membrane time constant and Vff, Vexc, Vinh are the synaptic potentials coming from the feedforward input,
recurrent excitatory and recurrent inhibitory connectivity, respectively. The firing rate R at time t of each neuron is computed as
an instantaneous quantity modulated by a gain α:

R(t) = α ·max(V (t),0) (11)

For computational simplicity, the neurons had no spontaneous firing rate and V was measured relative to the firing threshold.
Each neuron could send mixed excitatory and inhibitory synaptic potentials to its neighbour, although this specific model has
been reported to achieve similar behaviour with separate units38. For each stimulus of main orientation θ , the input to a cell
with preferred orientation θpref is:

Vff(θpref) = Jff
eκff·cos(2(θ−θpref))

2πI0(κff)
(12)

where Jff is the strength of the input and I0 is the modified Bessel function of order 0. The right-hand side of the equation
describes a von Mises with mean θpref and concentration κff. This latter parameter is related to the orientation variance Bθ ,
which was varied to yield a model’s TVF Bθ/CV curves:

Bθ =

√
0.5arccos((log(0.5)+κff)/κff)

2log(2)
(13)

a total of 20 Bθ spanning the same range used in the experiments were used, each with 32 different θ tiling a [−75°;75°]
orientation space. The recurrent connectivity profile for excitatory (Cexc) and inhibitory (Cinh) synapses was controlled by
separate von Mises distributions over the orientation space Θ:

Cexc(θpref) =
eκexc·cos(2(Θ−θpref))

2πI0(κexc)
(14)

Cinh(θpref) =
eκinh·cos(2(θ−Θpref))

2πI0(κinh)
(15)

which are both used to describe an overall connectivity kernel:

Ctot(θpref) = JexcCexc − JinhCinh (16)



which followed a typical Ricker wavelet (or Mexican hat) shape (Figure 7d). The overall activity of the network is then a
weighted sum of the firing rates of all the neurons:

Vexc −Vinh(t) = ∑
Θ

Ctot(θpref) ·R(t) (17)

Parameterization of the model was done to match single V1 neuron recordings of anesthetized cats, in an experimental setup
similar to the one used here69. The computational procedure to match experimental data was entirely done in a previous
publication38. Briefly, it consisted in scanning a range of possible values for each parameters, then find all possible combinations
using a metric of likeliness to single grating response, time-to-peak, peak response and tuning width. The parameters yielded
by this procedure were τ = 10.8 ms; α = 10.6 Hz/mV; Jff = 9.57 mv/Hz; Jexc = 1.71 Hz/mV; Jinh = 2.0178 Hz/mV. For the
feedforward mode of the model (Figure 7b), Jexc and Jinh were set to 0 Hz/mV and the input was convolved with a receptive
field:

RF =
eκRF·cos(2(θ−Θpref))

2πI0(κRF)
) (18)

of which we reported the Half-Width at Half-Height, given by70:

HWHH = 0.5arccos(
log(0.5)+κ

κ
) (19)

For the recurrent mode (Figure 7c-e), the concentration measures of the recurrent connectivity profiles κexc and κinh were
both varied from 0.35 to 7, in 200 even steps, and the input was not convolved with a receptive field.

Statistics and reproducibility
All data was analyzed using custom Python code. Statistical analysis was performed using non-parametric tests. Wilcoxon
signed-rank test with discarding of zero-differences was used for paired samples and Mann-Whitney U test with exact
computation of the U distribution was used for independent samples. Due to the impracticality of using error bars when plotting
time series, colored contours are used to represent standard deviation values (unless specified otherwise), with a solid line
representing mean values. For boxplots, the box extends from the lower to upper quartile values, with a solid white line at the
median value. The upper and lower whiskers extend to respectively Q1−1.5∗ IQR and Q3+1.5∗ IQR, where Q1 and Q3 are
the lower and upper quartiles and IQR is the inter-quartile range.

Data Availability

Data used in the present study is publicly available in a Figshare repository71. Unprocessed electrophysiological recording files
are available upon reasonable request to the corresponding author.

Code Availability

Custom Python code written for the present study is publicly available in a GitHub repository72.
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Supplementary Figure 1. Additional examples of single neuron tuning curves and VTF. (a) Tuning curves of four more
neurons, stimulated with Motion Clouds of increasing variance (controlled by Bθ ) from left to right. Colored dots represent the
mean firing rate across trials (baseline subtracted, 300 ms average), error bar the standard error and solid lines a fitted von
Mises function. (b) Variance-tuning functions (VTF), measuring the changes of orientation tuning measured by the circular
variance (CV, colored dots) as a function of stimuli variance, fitted with a Naka-Rushton (NKR) function (dashed curves,
parameters shown in light gray).
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Supplementary Figure 2. Naka-Rushton function fitting of VTFs. (a) Violin plot of the Bayesian Information Criterion
(BIC) of the CV curves of all recorded neurons. Each violin plot represents a different type of fitted equation, respectively:
Naka-Rushton (nkr, see Methods) ; Rectified Linear Unit (ReLU, f (x) = max(0,x)) ; logistic function (sigmoid,
f (x) = ex

ex+1 ) ; second degree polynomial function (pol2, f (x) = ax2 +bx+ c) and third degree polynomial function (pol3,
f (x) = ax3 +bx2 + cx+d). A lower BIC indicates less information lost in the fitting process, hence a better fitting model.
Naka-Rushton curves were chosen over sigmoid functions for the skewness of the BIC distributions towards negative values, as
well as the explainability of their parameters. n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001 (Kruskal-Wallis
H-test, post-hoc Dunn Pairwise test, Bonferroni corrected) (b) Variance-HWHH function, fitted with a Naka-Rushton function.
(c) Histograms of the NKR parameters (in the [5%;95%] range of possible NKR fitting values) for the 249 recorded units.
Median values are indicated by a black arrow (log(n) = 3.8, Bθ50 = 16.5°, f0 = 0.25). Parameter f0 is given in normalized
HWHH values. (d) Same as (b), with maximum firing rate as a function of input variance. (e) Same as (c), for maximum firing
rate. Median values are indicated by a black arrow (log(n) = 2.15, Bθ50 = 28.3°, f0 = 0.09). Parameter f0 is given in
normalized firing rate values
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Supplementary Figure 3. Additional examples of dynamical properties of neurons. (a) Peristimulus time (PST) histogram
and associated rasterplot of the four additional example neurons, for Motion Clouds with lowest (Bθ = 0°, purple) and highest
(Bθ = 35°, yellow) variance. (b) Dynamics of the tuning curves shown in Figure 2 in 100 ms windows, starting at the time
labelled atop of each column..
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Supplementary Figure 4. Graphical reports of clustering analysis. (a) Fraction of variance explained as a function of the
number of components used in the Principal Component Analysis. (b) Within-Cluster-Sum-of-Squares (WCSS) of the
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typically take the “elbow” of such a curve, if existent.
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Supplementary Figure 5. Additional clustering variables. (a) Boxplot of the VTF parameters for HWHH functions.
(b) Boxplot of the VTF parameters for maximum response functions.
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Supplementary Figure 6. Parameters evaluation of the decoders. (a) Optimization of the length of the time window ∆T ,
which controls the length of the integration time of the decoder (see Methods), for orientation decoders (left column), variance
decoders (middle column) and orientation x variance decoders (right column). (b) Optimization of the penalization norm
applied to the decoder, which controls the metric by which the classification error is minimized. l1 and l2 are defined as ∑i |xi|
and

√
∑i |xi|2, where x is a set of features fed to the classifier. The penalty norm ElasticNet linearly combines these two norms,

here with equal weighting applied to both norms. (c) Optimization of the parameter C controls the regularization strength,
which measure the magnitude of the penalty applied to large parameters, in order to prevent overfitting on reduced sets of data.
(d) Optimization of the percentage of data kept out of the training set to evaluate the decoder’s accuracy.
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Supplementary Figure 7. Decoding the experiment’s identity (the specific experiment which yielded the spikes) or
insertion’s identity (the specific insertion which yielded the spikes) of neurons does not produce any significant result, thereby
validating the fusion of multiple datasets in the decoding process. (a) Confusion matrix of a decoder trained to retrieve the
experiment identity using three groups of 30 neurons (bootstrapped 1000 times). (b) Confusion matrices of three decoders
trained to retrieve the insertion identity of the neurons recorded in each individual experiment.
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Supplementary Figure 8. Orientation variance cannot be accurately decoded from the population activity. (a) Time course
of a decoder trained to retrieve the variance Bθ of Motion Clouds. Solid dark line represents the mean accuracy of a 5-fold
cross validation and filled contour the SD. Decoding at chance level (here, 1/8) is represented by a gray dashed line.
(b) Population tuning curve of the decoder, representing the likelihood of decoding as a function of error on variance. (c) Same
as Supplementary Figure8a, trained with spikes from either resilient or vulnerable neurons. (d) Same as Supplementary
Figure8b, trained with spikes from either resilient or vulnerable neurons.
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