Enhanced wound healing of tissue-engineered human corneas through altered phosphorylation of the CREB and AKT signal transduction pathways

Camille Couture a,b,c,d, Pascale Desjardins a,b,c,d, Karine Zaniolo a,b,c,*, Lucie Germain a,b,c,d, Sylvain L. Guérin a,b,c,*

a CUO-Recherche, Médecine Régénératrice – Centre de recherche FRQS du CHU de Québec-Université Laval, Québec, Canada
b Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Canada
c Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
d Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada

A R T I C L E I N F O

Article history:
Received 13 November 2017
Received in revised form 5 April 2018
Accepted 10 April 2018
Available online 12 April 2018

Keywords:
Tissue-engineering
Cornea
Wound healing
CREB
AKT

A B S T R A C T

The cornea is a transparent organ, highly specialized and unique that is continually subjected to abrasive forces and occasional mechanical or chemical trauma because of its anatomical localization. Upon injury, the extracellular matrix (ECM) rapidly changes to promote wound healing through integrin-dependent activation of specific signal transduction mediators whose contribution is to favor faster closure of the wound by altering the adhesive and migratory properties of the cells surrounding the damaged area. In this study, we exploited the human tissue-engineered cornea (hTECs) as a model to study the signal transduction pathways that participate to corneal wound healing. By exploiting both gene profiling and activated kinases arrays, we could demonstrate the occurrence of important alterations in the level of expression and activation of a few mediators from the PI3K/Akt and CREB pathways in response to the ECM remodeling taking place during wound healing of damaged hTECs. Pharmacological inhibition of CREB with C646 considerably accelerated wound closure compared to controls. This process was considerably accelerated further when both C646 and SC79, an Akt agonist, were added together to wounded hTECs. Therefore, our study demonstrate that proper corneal wound healing requires the activation of Akt together with the inhibition of CREB and that wound healing in vitro can be altered by the use of pharmacological inhibitors (such as C646) or agonists (such as SC79) of these mediators.

Statement of significance

Corneal wounds account for a large proportion of all visual disabilities in North America. To our knowledge, this is the first time that a tissue-engineered human cornea (hTEC) entirely produced using normal untransformed human cells is used as a biomaterial to study the signal transduction pathways that are critical to corneal wound healing. Through the use of this biomaterial, we demonstrated that human corneal epithelial cells engaged in wound healing reduce phosphorylation of the signal transduction mediator CREB while, in the mean time, they increase that of AKT. By increasing the activation of AKT together with a decrease in CREB activation, we could considerably reduce wound closure time in our punch-damaged hTECs. Considering the increasing interest given to the reconstruction of different types of tissues, we believe these results will have a strong impact on the field of tissue-engineering and biomaterials. Altering the activation status of the Akt and CREB proteins might prove to be a therapeutically interesting avenue and may also find applications in wound healing of other tissues beside the cornea, such as the skin.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Our ability to see our surrounding relies directly on the integrity of the anatomical structures composing our eyes. One of these key components is the cornea, consisting of the outer layer of the eye. Its transparency is crucial for light transmission to the retina and allows proper visual perception of our environment. However, because of its location, the cornea is subjected to chemical and mechanical injuries. Corneal wounds are often the result of abrasion caused by fingernails [1] or prolonged contact lenses wear [2]. However, chemical burns, which can extensively damage the eye surface, remain the more severe cause of corneal wounds. Burn severity depends greatly on the nature of the chemical substance [3]. Contact with the limbal area is also a key factor of the injury’s severity, the prognostic of healing being poor when more than 50% of the limbal area is damaged [4]. The consequences of such corneal damages are dramatic and can lead to the complete loss of vision. Infections causing ulceration are frequent after corneal injuries [5]. If not treated rapidly and properly, the infectious pathogen can penetrate the entire cornea and cause damages to the subjacent tissues [6]. Many of these injuries will compell to corneal transplant or eye enucleation when they are untreated [7]. Furthermore, the loss of stem cells from the limbus of the damaged eye can lead to the limbal stem cell deficiency syndrome that also causes a partial or complete opacification of the cornea [8]. In the more severe cases, a complete loss of vision may arise [9]. Regardless of the case, the faster wound closure is occurring following corneal injury, the fewer consequences will result.

Recent improvements in tissue engineering have led to the reconstruction of a functional human corneal substitute that mimics the native cornea. This tridimensional substitute is composed of both a stroma and a stratified epithelium made up of 5–7 layers of untransformed human corneal epithelial cells (HCECs) [10-12]. More recently, this 3D-model was completed by the addition of a monolayer of corneal endothelial cells [11]. This novel corneal substitute relies on the ability of fibroblasts to secrete their own extracellular matrix (ECM) when ascorbic acid is added to the culture media, described as the self-assembly approach [13]. Because it is devoid of any synthetic material, our human tissue-engineered corneas (hTECs) share many aspects with the native cornea, such as a well-organized basement membrane (BM) and a typical epithelial stratification [11,12]. Recently, this substitute has been used in our laboratory to study both the cellular and molecular processes occurring during wound healing [14]. The dynamics of wound closure were found to be very similar between our hTEC and the native cornea, as the same genes and enzymes (in this case, matrix metalloproteinases) were found to be similarly altered during this process [15]. Because of these similarities, our hTEC represents an outstanding model that we can exploit to study in detail the molecular mechanisms of corneal wound healing as a prerequisite to further studies in animals.

Corneal wound healing is a complex event involving many processes such as cell death, proliferation, migration, adhesion and differentiation [16]. During these steps, the composition of the ECM is continually modified to allow proper reepithelialization, epithelial cell migration and differentiation [17,18]. The ECM is a non-cellular network of proteins and polysaccharides on which cells adhere through cell-matrix interactions [19]. Changes in the composition of the ECM are perceived by the integrins, a family of membrane-anchored receptors that bind components of the ECM [20,21]. The downstream cascades of mediators activated by these cell-matrix interactions then lead to the transcription of genes involved in wound healing [22]. The major pathways activated by the integrins include the JAK/STAT [23], MAPK [24] and PI3K/AKT pathways [25,26]. However, in corneal wound healing, little is known about which pathway contributes the most to the healing process.

In the present study, we used the hTEC as a model to investigate the signal transduction cascades that are activated in response to the remodelling of the ECM occurring during corneal wound healing. Alterations in the activation status of both the CREB and Akt mediators from the MAPK and PI3K/AKT pathways, respectively, were observed during corneal wound closure. Furthermore, by simultaneously reducing activation of CREB with the pharmacological inhibitor C646, and increasing that of Akt with the SC79 agonist, we considerably accelerated wound closure using wounded hTECs as a biological model.

2. Materials and methods

This study was conducted in accordance with our institution’s guidelines and the Declaration of Helsinki. The protocols were approved by the CHU de Québec – Université Laval hospital and Université Laval Committees for the Protection of Human Subjects.

2.1. Cell culture, production and wounding of the tissue-engineered human corneas

Human corneal epithelial cells (HCECs) were isolated from the limbal area of normal eyes (obtained from the Banque d’Yeux Nationale of the Centre Universitaire d’Ophthalmologie; CHU de Québec, Hôpital du Saint-Sacrement, Québec, QC, Canada) of 44-, 52- and 71 year-old donors as previously reported [10,16,27]. HCECs were cultured with a feeder layer of irradiated murine Swiss-3T3 fibroblasts (ATCC, Rockville, MD) [10] whereas human corneal fibroblasts were isolated from the stromal portion of a 26 days-old donor cornea left after disperse digestion and removal of both the endothelium and epithelium, and primary cultured as before [10,28]. All cells were grown under 8% CO2 at 37 °C and culture medium was changed after 2–3 days [12].

The tissue-engineered, two-layers 3D human corneas that have been used in this study were produced following the self-assembly approach [11,12]. Briefly, corneal fibroblasts were seeded and cultured in fibroblast growth medium and prompted to lay down their own ECM by the further addition of 50 μg/ml ascorbic acid (Sigma, Oakville, Ont., Canada) for 35 days [12]. After peeling from the flasks, two tissue sheets were superimposed to form a reconstructed stroma and were cultured for another week so that they could adhere to each other. HCECs were then seeded on the surface of the reconstructed stroma and cultured in submerged conditions in complete epithelial cell medium supplemented with ascorbate [12,28,29]. After 7 days, reconstructed tissues were fed an EGF-free epithelial cell medium and raised at the air–liquid interface for 10 days to induce epithelial differentiation. Reconstructed partial thickness corneas produced by the self-assembly approach were then wounded using a 8-mm biopsy punch (Fig. 1A and B). After wounding, the tissue-engineered corneas were placed over two supplementary fibroblast sheets (F3 and F4 on Fig. 1B) to allow reepithelialization over a natural matrix and the culture pursued at the air–liquid interface. It is important to point out that the culture medium was provided under the fibroblast sheets, and was not in direct contact with the epithelium. When indicated, the Akt inhibitor GDC-0068 (36 nM; Selleckchem, Houston, TX, USA), the p300/CBP-binding protein (CBP) inhibitor C646 (800 nM; Selleckchem) or the Akt agonist SC79 (22 nM; Sigma-Aldrich, Oakville, Ontario, Canada) were added to hTECs (in the culture medium, underneath the fibroblast sheets) immediately after they were wounded with the biopsy punch. The specific concentration selected for each of these pharmacological compounds is based on MTS assays conducted on HCECs.
grown as a monolayer (see Supplementary Methods and Supplementary Fig. 4). Wound closure was then monitored macroscopically every 24 h for 4 days and photographed at 24 h intervals (Zeiss Imager.Z2 microscope (Zeiss Canada Ltd, North York, ON, Canada). All experiments were conducted in quadruplicates.

2.2. Scratch wounds assay

Corneal epithelial cells \((1 \times 10^6 \text{cells})\) were plated with irradiated murine 3T3 fibroblasts \((3 \times 10^6 \text{cells})\) in 110 cm\(^2\) plates (86 mm \(\times\) 128 mm) in DH medium (Dulbecco-Vogt modification of Eagle’s medium with Ham’s F12 in a 3 : 1 ratio) with supplements (5% FetalClone II serum, 5 µg/mL insulin, 0.4 µg/mL hydrocortisone, 10 ng/mL epidermal growth factor, 10\(^{-10}\) mol/L cholera toxin, 100 µg/mL Penicillin, and 25 µg/mL Gentamycin). When cells reached confluence, a scratch (1.8 cm large \(\times\) 12.8 cm long) was created in the center of the plate using a cell scraper (Fisher Scientific, Asheville, USA). SC79 (22 µM) alone, C646 (800 nM) alone and a combination of both pharmacological agents (C646 + SC79) were added to fresh culture media every day until one condition was...
completely healed. Cells were then harvested to proceed immediately to the nuclear protein extraction.

2.3. Nuclear extracts and EMSA (electrophoretic mobility-shift assay)

Nuclear extracts prepared from all cell types were dialyzed against DNase 1 buffer [50 mM KCl, 4 mM MgCl2, 20 mM K2HPO4 pH 7.4, 1 mM β-mercaptoethanol (Bio-Rad Laboratories, Mississauga, ON, Canada) and 20% (v/v) glycerol], as described [30]. EMSAs were then conducted as described previously [31] by incubating nuclear proteins with a 5'-32P-end-labelled double-stranded oligonucleotide bearing the high affinity binding site for the transcription factor CREB and used as a probe in EMSAs. Briefly, 5 × 10^6 cpm labeled probe was incubated with the amount of crude nuclear proteins specified in the figure legend in the presence of 125 ng of poly(dIdC)-(dI-dC) (Amersham Biosciences, Piscataway, NJ, USA) and 30 mM KCl in buffer D [10 mM Hepes pH 7.9, 10% (v/v) glycerol, 0.1 mM EDTA, 0.5 mM DTT (dithiothreitol; Sigma-Aldrich, Oakville, ON, Canada) and 0.25 mM phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich Canada)]. Competition experiments in EMSA were conducted by adding unlabeled, double-stranded oligonucleotides (100- to 500-fold molar excesses) bearing either the CREB binding site or the high affinity binding sites for the transcription factors Sp1 and AP1 (Supplementary Table 1) during the assay. DNA–protein complexes were next separated by gel electrophoresis through 6% native polyacrylamide gels run against Tris-glycine buffer [50 mM Tris, 2.5 mM EDTA, 0.4 M glycine] at 4 °C. Gels were dried and autoradiographed at ~80 °C. Super-shift experiments were conducted by incubating 5 μg nuclear proteins from HCECs in the presence of 2 μl of a polyclonal antibody raised against CREB (Cell Signaling Technology Inc., Danvers, MA, USA).

2.4. Western blots

Western blots were conducted as described [32] using the following primary antibodies: rabbit polyclonal antibodies against phospho-Akt (1:1000; Cell Signaling Technology Inc.); detects endogenous levels of Akt only when phosphorylated at Ser473), total Akt (1:1000; Cell Signaling Technology Inc.), phospho-ERK1/2 (1:7500; Cell Signaling Technology Inc.; detects endogenous levels of Erk1 and Erk2 when dually phosphorylated at Thr202 and Tyr204 of Erk1 (Thr185 and Tyr187 of Erk2), and singly phosphorylated at Thr202), and actin (1:40000; Santa Cruz Biotechnology, Dallas, Texas, USA), a rabbit monoclonal antibody against total CREB (1:1000; Cell Signaling Technology Inc.), mouse monoclonal antibodies against total ERK1/2 (1:7500; Cell Signaling Technology Inc.) and phospho-CREB (1:100; Cell Signaling Technology Inc.; detects endogenous levels of CREB only when phosphorylated at serine 133) as well as a peroxidase-conjugated AffiniPure Goat secondary antibody against either mouse or rabbit IgG (1:1000 dilution; Jackson ImmunoResearch Laboratories, Baltimore, PA, USA). The labeling was revealed using a Detection Kit (Amersham, Baie d’Urfé, Canada) as described [33,34].

2.5. Gene expression profiling

Total RNA was isolated from the epithelial cells isolated from the central, the internal ring, and the external ring of both wounded and unwounded (used as negative controls) hTECs using the RNeasy Mini Kit (QIAGEN, Toronto, ON, CA) and its quality determined (2100 bioanalyzer, Agilent Technologies, Mississauga, ON, Canada) as recently described [15]. Because corneal fibroblasts are less abundant (36.2% ± 1.0%) than epithelial cells (63.9% ± 0.9%) are in the hTECs and that they are trapped in the stromal collagen matrix and not mitotically active, they will not significantly contribute to the total RNAs isolated as nearly all of it will originate from the epithelial cells. Labeling of Cyanine 3-CTP labeled targets, their hybridization on a G4851A SurePrint G3 Human GE 8x60K array slide (Agilent Technologies) and data acquisition and analyses were all done as recently reported [15] (GSE#-113438). For statistical purpose, cell samples used for microarrays were obtained from both wounded and unwounded hTECs prepared using HCECs cultured from 3 different donors (44, 52 and 71 years old).

2.6. Human phospho-kinase profiler array

The relative levels of 43 different human phosphorylated protein kinases were determined using a membrane-based antibody array (R&D Systems, Minneapolis, MN USA) according to the manufacturer’s instructions. Briefly, equal amounts (300 μg) of cell lysates prepared from either the central or the external area of wounded hTECs were incubated overnight with the phosphokinase array membrane, washed to remove unbound proteins and then incubated with a mixture of biotinylated detection antibodies. Streptavidin-HRP and chemiluminescent detection reagents were applied and the signal produced at each captured spot quantified using ImageJ (from Wayne Rasband, National Institute of Health (NIH), USA).

2.7. Histology and immunofluorescence analyses

Biopsy specimens from the hTECs treated with DMSO (negative control), C646 alone, GDC-0068 alone, or the combination of C646 + SC79 were fixed with BOUNJ solution (Produits Chimiques ACP; St-Leonard, QC, Canada) and embedded in paraffin. Micromtome sections (5 μm thick) were stained with Masson trichrome for histologic analysis. For immunofluorescence analyses, biopsy specimens from hTECs treated with C646 + SC79 or DMSO (control) were embedded in optimal cutting temperature compound (Soma- gen, Edmonton, AB, Canada), frozen in liquid nitrogen, and stored at ~80 °C until use. Cryosections (8 μm thick) were fixed with acetone 100% (10 min at ~20 °C) and then incubated for 45 min with either a mouse primary antibody directed against alpha-smooth muscle actin (α-SMA; 1:400; DAKO, Burlington, ON, Canada), collagen type I (1:500; Sigma, Oakville, ON, Canada) or fibronectin (1:200, Sigma, Oakville, ON, Canada), or with a rabbit primary antibody directed against collagen type IV (1:200; Abcam, Toronto, ON, Canada). All antibodies were diluted in PBS containing 1% bovine serum albumin. Samples were washed with PBS before addition of peroxidase-conjugated AffiniPure Goat secondary antibody against either mouse or rabbit IgG (1:800, Thermo Fisher Scientific Inc., Rockford, IL, USA) and further incubated for 30 min. Cell nuclei were also labeled with Hoechst reagent 33258 (1:100; Sigma) following immunofluorescence staining. Tissue samples were then observed with an epifluorescence microscope (Zeiss Imager.Z2; Zeiss Canada Ltd., North York, ON, Canada). They were photographed with a numeric CCD camera (AxioCam MRm; Zeiss Canada Ltd.). Negligible background was observed for controls (primary antibodies omitted).

2.8. Electron microscopy

hTECs were fixed in 2.5% glutaraldehyde (Canemco, Lakefield, Québec, Canada) and processed for transmission electron microscopy (TEM), as described [35]. Briefly, the glutaraldehyde-fixed hTEC was washed in cacodylate buffer, postfixed in 1% osmium tetraoxide, stained with 0.5% uranyl acetate, dehydrated in a graded series of ethanol solutions, and embedded in PolyBed 812. Thin sections were processed and stained with uranyl acetate.
and lead citrate. Tissues were visualized using a JEOL JEM-1230 (Tokyo, Japan) transmission electron microscope at 80 kV.

2.9. Quantitative PCR (qPCR)

Quantitative PCRs were conducted using total RNAs prepared for microarray analyses exactly as recently reported [15]. The DNA sequence of all the primers used is listed in Supplementary Table 1.

2.10. Statistical analyses

Student’s t-test was employed to determine statistical significance for comparison of the groups in qPCR analyses. The values are represented as mean ± standard error of the mean (SEM) and *P < 0.05* was considered significant.

3. Results

3.1. Damage to the tissue-engineered human cornea alters the pattern of HCECs expressed genes

Wound healing is a process involving activities such as cell migration and proliferation. Migration of corneal epithelial cells requires expression of both extracellular matrix (ECM) proteins and matrix metalloproteinases (MMPs) that ensure appropriate remodeling of the ECM during the wound healing process [36–38]. We recently evaluated the feasibility of using hTECs comprising a stroma and a stratified epithelium produced using human corneal epithelial cells (HCECs) isolated from donors of different ages, as a model for studying the molecular mechanisms of corneal wound healing in an environment close to the in vivo condition [15]. Punch biopsy-wounded hTECs entirely heal in 6–7 days and display a newly produced epithelium that stratifies similarly to the normal corneal epithelium near the wound margin and in the middle of the neoepithelium (Fig. 1A and B) demonstrating that hTECs appropriately respond to injury and that it clearly represents an appropriate model to study the mechanisms of corneal wound healing.

Binding of ECM components with their corresponding integrins triggers the activation of intracellular signaling pathways such as the JAK/STAT [23], mitogen-activated protein kinases (MAPKs) or phosphatidylinositol-3OH kinase (PI3K)/Akt [39] pathways (Fig. 1C). To investigate whether expression of the genes coding for the major signal transduction pathways is altered during corneal wound healing, we wounded hTECs and harvested the epithelial cells from two different areas on the wounded corneas after 4-more-days of culture at the air–liquid interface: i) the central area of 8 mm in diameter (wounded) that contains the neoepithelium, and ii) the external area of our wounded hTECs (0.60 vs 11.09, respectively; Fig. 3B). Furthermore, and consistent with the phospho-kinase arrays, the p-CREB/t-CREB ratio was considerably lower in the central wound, together with a decrease in the phosphorylation of CREB, ERK1/2, STAT5, Src, Lyn, Fyn, HSP27 and Hck (Fig. 3B).

As the phospho-kinase array can only detect the phosphorylated proteins and does not take into consideration their corresponding unphosphorylated state, we next examined the levels of total Akt (t-Akt) and CREB (t-CREB) protein, together with the level of their phosphorylated counterpart (p-Akt and p-CREB) in the proteins extracted from both the central and external regions of our wounded hTECs by Western blot analysis. Confirming the results obtained previously, we observed a significant increase in the p-Akt/t-Akt ratio in the central compared to the external area of our wounded hTECs (4.45 vs 1.61, respectively; Fig. 3C). Therefore, activation of the PI3K/Akt pathway is coordinated with the suppression of the CREB pathway during wound healing of hTECs.

3.3. Wound closure time is reduced by the CREB inhibitor C646 and the AKT agonist SC79

We next searched the microarray data files to sort out genes encoding the mediators from the ERK5, JAK/STAT, MAPK, JNK and PI3K/Akt pathways whose expression is the most deregulated in HCECs from the central and external areas of the wounded corneas relative to their unwounded substitutes. No significant alterations were observed in the expression of mediators from the ERK5 and JAK/STAT pathways, respectively (Fig. 2A). However, expression of a few mediators from the MAPK (such as FAK (PTK2B), FIN, MRAS), JNK (FAK, RAC3) and PI3K (FAK, AKT3) pathways were observed (Fig. 2A). Interestingly, some mediators, such as FAK and AKT, had their expression considerably increased whereas others, such as RAC3 and CREB seek their expression reduced in the wounded (central) area of hTECs. The increase in the expression of AKT3 and PTK2B, as well as the reduction in CREB expression observed by microarray in the central region of wounded hTECs was also validated by qPCR (Fig. 2B).

To confirm the contribution of the PI3K/AKT and CREB signaling pathways to corneal wound healing in our hTEC model, phosphorylation levels of protein mediators from different pathways were checked using the phospho-kinase proteome profiler array (Fig. 3A). An increase in the phosphorylation status of Akt and P53 family members was observed in the central wound, together with a decrease in the phosphorylation of CREB, ERK1/2, STAT5, Src, Lyn, Fyn, HSP27 and Hck (Fig. 3B).

As the phospho-kinase array can only detect the phosphorylated proteins and does not take into consideration their corresponding unphosphorylated state, we next examined the levels of total Akt (t-Akt) and CREB (t-CREB) protein, together with the level of their phosphorylated counterpart (p-Akt and p-CREB) in the proteins extracted from both the central and external regions of our wounded hTECs by Western blot analysis. Confirming the results obtained previously, we observed a significant increase in the p-Akt/t-Akt ratio in the central compared to the external area of our wounded hTECs (4.45 vs 1.61, respectively; Fig. 3C). Furthermore, and consistent with the phospho-kinase arrays, the p-CREB/t-CREB ratio was considerably lower in the central wound (0.40 in the central wounded area vs 1.66 in the external area). As CREB is a direct target of Erk kinases [40], we also determined the phosphorylation level of these mediators in our wounded hTECs. Consistent with the data from the phospho-kinase arrays (Fig. 3B), and as for CREB, the level of phosphorylated Erk1/2 (p-Erk1/2) was strongly reduced in the central area relative to the external area of our wounded hTECs (0.60 vs 11.09, respectively; Fig. 3C). Therefore, activation of the PI3K/Akt pathway is coordinated with the suppression of the CREB pathway during wound healing of hTECs.

3.3. Wound closure time is reduced by the CREB inhibitor C646 and the AKT agonist SC79

As pharmacological inhibitors and agonists of the PI3K/Akt and CREB are commercially available, we next evaluated the impact of altering the activation of these signal transduction pathways on the dynamic of wound closure using our wounded hTECs as a model. Approximately 20% of the wounded surfaces were remaining 4-days post-wounding on the hTECs exposed solely to the vehicle (DMSO) (which have been used as controls in Fig. 4A). Indeed, DMSO-exposed hTECs required between 6 and 7 days to reach complete closure of the wounds. Wounded hTECs supplemented with 36 nM GDC-0068, an inhibitor of Akt, had a dramatically reduced wound closure capacity (more than 50% of the wounded areas were remaining at 4 days post-wounding) when compared...
On the other hand, wound closure was significantly accelerated (only 8% of the wounded areas were remaining at 4 days post-wounding) when wounded hTECs were maintained in the presence of 800 nM C646, an inhibitor of p300/CREB binding protein (CBP) [41]. We then treated our wounded hTECs simultaneously with the C646 inhibitor (800 nM) and the Akt agonist SC79 (22 μM) and again monitored the dynamic of wound closure. As in the previous experiment, near 22% of the wounded surfaces were remaining at 4 days post-wounding on the hTECs exposed solely to DMSO (Fig. 4B). On the other hand, co-incubation of wounded hTECs with both C646 and SC79 resulted in the complete closure of the wounds at 4 days post-wounding. We therefore conclude that inhibition of the CREB pathway together with activation of the PI3K/Akt pathway significantly reduces wound closing time in our wounded hTEC substitutes.
3.4. Histologic and ultrastructural analysis of C646/SC79-treated wounded hTECs

After wounding, hTECs are placed over two supplementary fibroblast sheets (F3 and F4) to allow reepithelialization over a natural matrix. Four days after wounding, epithelial cells migrated to regenerate a neoepithelium. Histologic analysis of our wounded, DMSO-treated hTECs revealed the presence of a stratified epithelium with a structural organization very similar to the normal cornea (i.e., a basal layer covered by five or six layers of differentiating cells; Fig. 4C). Suprabasal epithelial cells at the tip of the migrating epithelial tongue (MET) migrated over the basal layer to make contact with the tissue-engineered stroma. The MET was however clearly shorter when wounded hTECs were added the Akt inhibitor GDC-0068. On the other hand, hTECs treated with C646 had a much longer MET that increased further when both C646 and SC79 were added together. Electron microscopic examination of the wounded hTECs revealed the presence of an organized epithelial-stromal junction (ESJ) in the unwounded side of both the DMSO-exposed (Fig. 5A and A’) and C646/SC79-treated hTECs (Fig. 5C and C’), with the presence of many hemidesmosomes (black arrowheads) that attach basal corneal epithelial cells to the underlying fibroblast sheets along the continuous BM (Fig. 5A and A’). In the DMSO-treated hTECs, a discontinuous, disorganized BM was observed in the MET with the presence of a few hemidesmosomes (Fig. 5B and B’). In addition, the stromal compartment underneath the epithelium was made-up of numerous collagen fibers (Supplementary Fig. 2). Therefore, these results indicate that the formation of an ESJ resumed after reepithelialization of wounded hTECs.

We then examined the expression of the ECM components CI, CIV and FN that become typically deregulated during corneal wound healing by indirect immunofluorescence analyses on wounded hTECs exposed or not to the C646/SC79 combination. As can be seen on Fig. 6, the hTECs stroma as well as that of the native cornea, expresses CI. As previously reported [42], staining for CIV was present throughout the entire stroma in the MET region of control wounded hTECs (DMSO) as in the fibroblast sheets (F3 + F4) before their addition under the reconstructed cornea. CIV became essentially expressed along the basal membrane (BM) upon incubation with C646 + SC79, a localization similar to that seen in the native cornea. FN staining was observed along the BM and more diffusely into the stroma of hTECs and the native cornea. On the other hand, none of our hTECs nor the native cornea express α-SMA, which has been used in order to ensure that stromal keratocytes have not differentiated into α-SMA+ myofibroblasts (staining was also conducted on a section from a native human saphenous vein as a positive control).

3.5. C646 alters the phosphorylation but not the DNA binding capacity of CREB in wounded hTECs

As there are very little details regarding the impact of CREB phosphorylation on its DNA binding properties, we examined...
whether inhibition of CREB with C646 would also alter its capacity to recognize its high affinity target site in DNA. HCECs were therefore grown as monolayers and scratch-wounded before they were added either C646 or SC79, or the combination of both. As a control, scratch-wounded HCECs were also exposed solely to the vehicle (DMSO). Phosphorylated CREB was easily detected in unwounded HCECs grown without any added compounds (NC) or in the wounded HCECs exposed solely to the vehicle (DMSO) (pCREB, Fig. 7A). Interestingly, and in agreement with the data from the kinase array conducted on the wounded and unwounded human TECs (one out of four representative hTECs is shown for each condition) were wounded and maintained in culture medium supplemented with GDC-0068 or C646 (left). Wound surfaces remaining for each condition were determined at each day and plotted on graph (right). Control wounded hTECs were exposed solely to the vehicle (DMSO). Scale bars: 1 mm. B: Wounded hTECs were incubated with both C646 and SC79 (left; one out of six representative hTECs is shown for each condition). Wound surfaces remaining were determined at each day and plotted on graph (right). Control wounded hTECs were exposed solely to the vehicle (DMSO). Scale bars: 1 mm. C: Composite images showing a complete histological view of wounded TECs grown in the presence of GDC-0068, C646 or both the combination of C646 and SC79 at 4 days following corneal damage (sections were stained with Masson trichrome; cells are pink and collagen is bluish). The wound margin created by the biopsy punch is indicated. Scale bar: 100 μm.

Fig. 4. Impact of GDC-0068, C646 and SC79 on wound closure of human TECs.
Fig. 5. Transmission electron microscopic analysis of C646/SC79-treated wounded hTECs. Electron microscopic characterization was made on the neoepithelium of wounded hTECs treated with DMSO (negative control; panels A-B) or with the combination of C646 and SC79 (panels C-D). Higher magnification (A’, B’, C’ and D’) shows the structure of hemidesmosomes (arrowheads) present at the epidermal-stromal junction. BM, basement membrane; E, epithelial cells; M, microvilli; C, collagen fiber; Scale bars: 1 μm.
In hTECs, we also observed a weak reduction in the amount of pCREB when the HCEC monolayer is scratch-wounded. As expected, the presence of the Akt agonist SC79 did not alter the phosphorylation status of CREB in wounded HCECs. On the other hand, no phosphorylated CREB could be detected when scratch-wounded HCECs were grown in the presence of C646, either alone or in combination with SC79 (Fig. 7A). The absence of phosphorylated CREB when HCECs are grown with C646 did not result from a corresponding reduction in the expression of total CREB proteins as the total CREB antibody could detect amounts of CREB proteins in C646 treated
cells very similar to those of the DMSO control, wounded HCECs. However, neither C646 nor SC79 resulted in a decreased binding of CREB to the DNA labeled probe by supershift in EMSA as the addition of an antibody directed against CREB caused a reduction in the formation of the CREB complex but also yielded a new, supershifted complex (SSC; Fig. 7B) that results from the formation of a DNA-CREB-antibody ternary complex. Therefore, decreased in the phosphorylation of CREB does not alter its DNA binding properties in vitro.

4. Discussion

Wound healing of the human cornea is a complex process that requires cell migration and proliferation. Corneal wound healing is characterized by major changes in the composition of the ECM such as a massive transitory secretion of fibronectin combined with a reduction in the secretion of collagens and laminins [43–45]. This ECM remodeling is required to allow fast migration of corneal epithelial cells in order to rapidly cover the damaged area. In the present study, we used the hTEC as a model to study the signal transduction pathways, and their participating protein mediators, that are involved in corneal wound closure. We demonstrated that expression of a few protein mediators from both the PI3K/Akt and MAPK pathways was altered during wound healing of damaged hTECs. Increased phosphorylation of Akt combined to a reduced phosphorylation of the CREB mediators were among the most striking alterations observed. By supplementing the culture medium of wounded hTECs with both the CREB inhibitor C646 and the Akt agonist SC79, we could considerably accelerate wound closure in our model.

A few human models of corneal wound healing have been described [12,46,47]. Ex vivo organ culture models [46,47] take advantage of the native tissue but the limited availability and inter-individual variability restrict the number of analyses that can be performed simultaneously. In contrast, a large number of conditions and amount of treated cells is possible with the scratch assay. However, epithelial cells are in contact with the growth medium that contains numerous supplements and growth factors since HCECs are cultured submerged in the culture medium. The hTEC has the advantage of a 3D structure that renders possible the culture at the air–liquid interface. Under this condition, the medium containing the growth factors is not in direct contact with epithelial cells since it is only present under the reconstructed stroma. Consequently, the epithelium is nourished indirectly, a condition that better mimic the in vivo condition seen with the native cornea.

Our gene profiling analyses revealed alterations in the expression of a few genes coding for mediators from both the MAPK and PI3K/Akt pathways, including genes, such as PTK2 and members of the Akt family, whose expression is increased in the central wounds, whereas others, such as CREB, are decreased in wounded hTECs. PTK2 encodes for the kinase FAK (focal adhesion kinase) that is activated through a yet poorly understood mechanism possibly involving FAK clustering, autophosphorylation of FAK at Y397 [48] and a mechanical linkage of integrins to the actin cytoskeleton [49]. This increased expression of PTK2 is also consistent with the coordinated increase in the expression of the β1-associated integrins α1, α5, α6 and α11 that we also observed in our wounded hTECs (Supplementary Fig. 3). Under normal circumstances, activation of FAK leads to the downstream activation of the ERK kinases [50], a required step in the activation of a number of transcription factors such as c-Jun [51], AP-1, NFκB, Nrf2 [52] and Sp1 [53]. However, our results demonstrate clearly that phosphorylation of ERK
kinases is considerably reduced (more than 18-fold reduction) in the central wound relative to its level in the external area of wounded hTECs. We previously reported that expression of the α5, α6 and α9 integrin subunits were negatively regulated by the transcription factor NFI [54-56]. Interestingly, Zheng et al. reported that expression of the NFI isoform NFIA was induced in an ERK-dependent manner in mouse neurons [57]. This raises the interesting possibility that the increased expression observed for both the α5 and α6 integrin genes in our wounded hTECs may result, at least in part, from the coordinated reduction in NFI activity in response to a reduction in ERK activation.

The kinase arrays conducted in this study demonstrated that both the activation of Akt and the suppression of the CREB activity are required in order to ensure proper wound closure of punch-damaged hTECs. Phosphorylated Akt as being involved in wound healing is no surprise. Akt, also referred to as protein kinase B, is a serine threonine kinase that plays many critical roles in biological processes such as cell survival, proliferation, migration, angiogenesis and metabolism. It is activated downstream of phosphatidylinositol 3-kinase (PI3K) [58] by a variety of growth factors and cytokines. The upregulated levels of Akt that have been reported in exaggerated wound-healing responses [59], together with decreased Akt signaling in chronic, non-healing wounds [60] all point to the central role played by Akt in wound healing. Indeed, Xiao et al. recently demonstrated that treatment of dorsal skin wounded C57BL/6 mice with ozone oil facilitated the wound healing by increasing fibroblast migration via PI3K/Akt/mTOR signaling pathway in vivo [61]. Similar observations were also reported for wound healing of the rat skin, the impaired wound healing observed for the skin of diabetic rats being reported to result from a dysfunction in the Akt/mTOR pathway [62]. Most interestingly, high glucose was reported to suppress Akt phosphorylation in a ROS sensitive manner, a process that also delayed corneal epithelial wound healing in the porcine cornea [63]. On the other hand, much less is known about the impact CREB phosphorylation has on wound healing. We initially thought that the negative action of phosphorylated CREB on HCECs proliferation in wounded hTECs could rely on its ability to increase the expression of the antiproliferative molecule p21 as target sites for CREB have been identified in the promoter region of the p21 gene [64]. However, close comparison of the microarray data between the external region and central wound revealed no significant variation in the expression of the p21 gene (Supplementary Table 2). Somehow consistent with our results, CREB phosphorylated at its serine 133 residue has been recently found to act as a negative regulator of PDGF-BB-stimulated vascular smooth muscle cells (VSMCs) proliferation [65]. Similarly, a migration-inhibitory function for CREB was also reported in glioma cells, a process that apparently depends on a CREB-miR-9 negative feedback minicircuitry [66]. Interestingly, CREB was found to simultaneously play a pro-proliferative and anti-migratory role in such cells, a process described by these authors as the “go or grow” process. Suppression of CREB by miR-150, that also demonstrates the ability to also suppress expression of EP300, was reported to increase migration and invasiveness of HCT116 cells, a mechanism that could also be reproduced by knocking-down CREB expression by CRISPR/Cas9 [67]. However, and to our knowledge, we are the first to demonstrate that both these mechanisms (suppression and activation of CREB and Akt activities, respectively) occur simultaneously while wound healing of hTECs is proceeding.

Blocking the action of CREB with the C646 inhibitor together with increasing Akt activation with the SC79 agonist is particularly interesting as it significantly reduced wound closure time from 7 days (which is required for complete closure of control hTECs exposed to DMSO) to only 4 days (when hTECs are exposed to both C646 and SC79) in our hTEC model. Analysis of the ECM composi-

tion underneath the wounded hTEC neo-epithelium exposed to C646 + SC79 revealed that as for the native cornea, they also express Cl, CIV and FN. Staining for CIV was present throughout the entire stroma in the wounded hTEC (DMSO) but interestingly became essentially expressed along the basal membrane (BM) upon incubation with C646 + SC79 suggesting a more mature tissue structure resembling that observed with the native, unwounded cornea. Type IV collagen is the BM basic structural component that forms the backbone to which other ECM components attach [68]. This is particularly interesting in that culturing embryonic stem cells on CIV has been shown to induce their differentiation into corneal epithelial progenitor cells, a process dependent on the expression of the transcription factor Pax6 [69,70].

Corneal wounds account for 37% of all visual disabilities and 23% of medical consultations for oculair problems in North America [71]. Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Severe recurrent and persistent corneal wounds secondary to ocular diseases such as trauma, autoimmune diseases, and chemical alkali burns, can progress to corneal perforation with a risk of eye loss [72]. Moreover, one million laser vision corrective procedures are performed each year using refractive surgery (primarily photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK)) in USA [73]. According to the US Food and Drug Administration (FDA), epithelial defects reach 0.5% in patients treated with LASIK but a more realistic non-FDA estimate reported defects ranging between 5 and 22.6% depending on the study [74]. The cellular and molecular regulatory phenomena associated with postoperative wound healing are likely to be involved in the adverse effects observed after these surgeries [75] but their underlying mechanisms yet remain to be elucidated. Our demonstration that wound closure could be considerably accelerated by simultaneously suppressing CREB activation with C646 whereas that of Akt is increased with SC79 is particularly interesting as it may provide a new therapeutic tool in the treatment of many of these wound-healing related corneal pathologies. Meanwhile, as both mRNA expression of the gene encoding Fyn, a protein kinase that plays an important role upon activation of the integrin-dependent MAPK signalization pathway, and Fyn phosphorylation are considerably reduced in wounded hTECs (Figs. 2A and 3C), further characterization of this mediator might prove an interesting avenue in the understanding of the molecular mechanisms that contribute to corneal wound healing.

5. Conclusions

In this study, we demonstrated that hTECs is an attracting substitute in order to study expression of the genes encoding the many mediators of the signal transduction pathways that play pivotal functions in the response of corneal epithelial cells toward wound healing. Most of all, the Akt and CREB genes might prove to be therapeutically interesting targets and may also find applications in wound healing of other tissues, such as the skin.

Acknowledgments

The authors would like to thank Mr. Gaétan Le-Bel, Mrs. Amélie Lavoie and Mrs. Manel Benhassine for their technical assistance, and the Institut de Biologie Intégrative et des Systèmes (IBIS; Université Laval) for their help with electron microscopy.

Funding

This work was supported by the Canadian Institutes for Health Research (CIHR) Grant MOP-12087 and FDN-143213 (L.G.), the Fondation des Pompiers du Québec pour les Grands Brûlés.